
Exploring code

Thomas LaToza

05-899D: Human Aspects of Software
Development (HASD)

Spring, 2011

(C) Copyright Thomas D. LaToza

Topics related to exploring code

6. Finding and understanding code
6.1 Exploring code
6.2 Reverse engineering
6.3 Reading code (program comprehension), mental models of
programs, effects of expertise

7.6 Navigating working sets - navigating between code you’ve
already found

8.3 Debugging

2

Why do developers explore code?

Before proposing change
Understand how code works to plan a change
 How should I do this? What’s the right way to do this?

After proposing a change
Investigate the implications of a change
 Will it work? What might it break?

3

“Investigating” code during coding activities

4

Circle size % of time Edge thickness % of transitions observed

Reproduce
Debug

Investigate

Test
6%

33%

28%

4%

11%

16% 5%Edit

Reuse

Compile
50%

50%
28%

40%

12%

20%

11%
86%

3%

22%

67%11%

14%

22%

20%

18%

29%

11%86%
3%

55%
32%

5%
6%

Exploratory studies related to exploring code

5

Study Type #
developers

Task length
(mins)

Tasks

[Vans, Mayrhauser, &
Somlo 99]

Field observations 4 125 Fixing bugs

[LaToza, Garlan,
Herbsleb, Myers 07]

Lab study 13 90 x 2 Investigate & fix complex
design problems

[Ko, DeLine, &
Venolia 07]

Field observations 17 90 Fixing bugs, implementing
features

[Sillito, Murphy, & de
Volder 08]

Lab study, field
observations

9, 16 45, 30 Fixing bugs, implementing
features

[Robillard, Coelho, &
Murphy 08]

Lab study 5 125 Add autosave feature to text
editor

[Starke, Luce, Sillito
09]

Lab study 10 30 Fixing bugs, implementing
features

[Abi-Antoun, Ammar,
& LaToza 10]

Lab study 3 120 Fixing bugs, implementing
features

[LaToza & Myers 10] Lab study, field
observations, survey

13, 460, 17 90 mins x 2, 90
mins

Fixing bugs, implementing
features

[LaToza & Myers 10] Survey 179 N/A N/A

Research questions: Questions during coding activities, exploring code questions, problems exploring code

Developers ask questions

6

Andrew J. Ko, Robert DeLine, and Gina Venolia, Information Needs in Collocated Software Development Teams, in ICSE '07:
Proceedings of the 29th international conference on Software Engineering, IEEE Computer Society, Washington, DC, USA, May 2007.

Questions about code elements

7

Jonathan Sillito, Gail C. Murphy and Kris De Volder. Asking and Answering Questions during a Programming Change Task. In IEEE
Transactions on Software Engineering. 2008.

Finding focus points Expanding focus points

Questions about code elements

8

Jonathan Sillito, Gail C. Murphy and Kris De Volder. Asking and Answering Questions during a Programming Change Task. In IEEE
Transactions on Software Engineering. 2008.

Understanding a subgraph Questions over groups of subgraphs

Questions about object structure

9

Abi-Antoun, M., Ammar, N., LaToza, T. (2010). Questions about object structure during coding activities. In the Workshop on
Cooperative and Human Aspects of Software Engineering at ICSE '10.

Is in tier

Is owned
[...] the window itself has a reference to the UndoManager but you canʼt tell from
this diagram whether each window has its own UndoManager, or whether it is just
one global manager.

How to get
How I will get hold of the DrawingEditor object? [...] Basically I need to know the
instance of the current window.

What I would be interested in is looking in the code to try to understand where are
the view and model

Part of Maybe I would start with the Drawing object and that should have a list of listeners?

Navigability

Is a

I know I need to get the view from here; so how do I do that?

Who implements type X? [who can be an object or a type]

Cardinality

Has a Maybe I would start with the Drawing object and that should have a list of listeners

May alias
So I have different selections in the different views.

The class diagram says that the DrawingEditor has one DrawingView and the
StandardDrawingView may or may not have a Drawing.
I would like to know the cardinality: so Window has one or more
StandardDrawingViews?

Let's say I am in the StandardDrawing class and I want the JavaDrawApp object
which is a DrawingEditor [...]. What would save me a lot of time is to say now I am
at the Drawing and I want to go to the DrawingEditor, show me my options.

Both of them are two views on the same Drawing, but if there are two windows...

!" #!" $!" %!" &!" '!"

()*+,-".+/0120"

345"64)+6"

748"92:-;"46145"

<5":=2+>"

345"4"

?4/>12461-8"

<5"12"@+/"

3:="-:"0+-"

A4/-":B"

C4D104)161-8"

<5"4"

A:12-5"-:"

E+61+B5" FG+5@:25"

Questions and beliefs about object structure

Hard-to-answer questions about code

10

How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team’s component caused this bug? (1)

Debugging (26)
How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What’s the best design for implementing this? (7)

Implementing (19)

What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

Policies (15)

Why was it done this way? (14) [15][7]
Why wasn’t it done this other way? (15)
Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Rationale (42)

When, how, by whom, and why was this code changed or
inserted? (13)[7]
What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]
Has this code always been this way? (2)
What recent changes have been made? (1)[15][7]
Have changes in another branch been integrated into this
branch? (1)

History (23)

What are the implications of this change for (5) API clients (5),
security (3), concurrency (3), performance (2), platforms (1), tests
(1), or obfuscation (1)? (21) [15][24]

Implications (21)

Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)

Refactoring (25)

Is this code correct? (6) [15]
How can I test this code or functionality? (9)
Is this tested? (3)
Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Testing (20)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)
What do I need to include to build this? (3)
What includes are unnecessary? (2)
How do I build this without doing a full build? (1)
Why did the build break? (2)[59]
Which preprocessor definitions were active when this was built? (1)

Building and branching (11)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Teammates (16)

What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Intent and Implementation (32)

How big is this code? (1)
How overloaded are the parameters to this function? (1)

Method properties (2)

Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Location (13)

What is the performance of this code (5) on a large, real dataset (3)? (8)
Which part of this code takes the most time? (4)
Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)
How many of these objects get created? (1)

Performance (16)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Concurrency (9)

What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)
What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)
What is responsible for updating this field? (1)

Contracts (17)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)
What are the possible actual methods called by dynamic dispatch
here? (6)
How do calls flow across process boundaries? (1)
How many recursive calls happen during this operation? (1)
Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)
What is catching this exception? (1)

Control flow (19)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Dependencies (5)

What is the original source of this data? (2) [15]
What code directly or indirectly uses this data? (5)
Where is the data referenced by this variable modified? (2)
Where can this global variable be changed? (1)
Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Data flow (14)

What are the composition, ownership, or usage relationships of this
type? (5) [24]
What is this type’s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)

Type relationships (15)

How does this code interact with libraries? (4)
What is the architecture of the code base? (3)
How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Architecture (11)

Thomas D. LaToza and Brad. A. Myers. (2010). Hard to answer questions about code. In the PLATEAU workshop at SPLASH ‘10.

Hard-to-answer questions about code
No dominant hard question

Rationale questions both most frequently reported and
unaddressed by research

Many hard-to-answer questions already addressed by research

Many hard-to-answer questions are not addressed by research

Gaps between situations addressed by research and problems
developers reported

11

Thomas D. LaToza and Brad. A. Myers. (2010). Hard to answer questions about code. In the PLATEAU workshop at SPLASH ‘10.

Questions about control flow (19)

12

In what situations or user
scenarios is this called? (3)

What parameter values does each
situation pass to this method? (1)
What parameter values
could lead to this case? (1)

What are the possible actual methods
called by dynamic dispatch here? (6)

How do calls flow across
process boundaries? (1)

How many recursive calls happen
during this operation? (1)

Is this method or code path called
frequently, or is it dead? (4)

What throws this exception? (1)
What is catching this exception? (1)*

profiling, program analysis

*
*

*
IDE code browsers

checked exceptions

*
profilers

✖
✖

✖

✖

Thomas D. LaToza and Brad. A. Myers. (2010). Hard to answer questions about code. In the PLATEAU workshop at SPLASH ‘10.

Developers subgoal
Fix bug
 Repro bug - “500 internal server error”
 Debug using VS
 Attach debugger
 Set to break on exceptions
 NPE exception - why is this null?
 Browse callers using emacs & ctags
 Edit values in VS and try continuing
 Edit & test - still same exception
 Browse further up dataflow path - find mutexs
 Don’t own code, so not sure how supposed to work
 Talk to teammate who owns code
 Make a change

13

Goals not strictly hierarchic - actions may serve multiple functions
Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: a study of developer work habits. In
Proceedings of the 28th international conference on Software engineering (ICSE '06). ACM, New York, NY, USA, 492-501.

Questions evolve through a task

14

Jamie Starke, Chris Luce, Jonathan Sillito. Searching and Skimming: An Exploratory Study. In Proceedings of ICSM 2009.

Developers constantly switch tasks

Task switches occurred on average every 5 minutes (+/- 1.7)
Caused by emails, bug database alerts, waiting for compilation or tests to
run, email replies, needs to learn something,

15

Andrew J. Ko, Robert DeLine, and Gina Venolia, Information Needs in Collocated Software Development Teams, in ICSE '07:
Proceedings of the 29th international conference on Software Engineering, IEEE Computer Society, Washington, DC, USA, May 2007.

High-level vs. low level questions

16

What
caused

this bug?

What calls
this method?

How do I
implement
this change?

...

...

High level
questions

Low level
questions

...

......
harder to answer

hard to support

easier to answer
behavioral

direct tool support

conceptual

Mid level
questions

Developers switch between mental models of code

Domain model - knowledge about how application domain works (e.g.,
how distributed systems work)

Situation model - contracts of what code should do, functional model of
how these are connected

Program model - control flow, syntax structures, implementation details

17

Domain

A. Marie Vans, Anneliese von Mayhauser, and Gabriel Somlo. 1999. Program understanding behavior during corrective
maintenance of large-scale software. Int. J. Hum.-Comput. Stud. 51, 1 (July 1999), 31-70.

Developers explain design decisions

A scenario

 Developer considering a change.

 But is current design a) designed to satisfy some (unknown)
 constraint or b) accidental?

Explanations establish traceability from low level design
decisions to motivating requirements.

18

“When you're inserting text you could actually doing something that makes the folds
status wrong. … In the quick brown fox. If fox is under brown and I'm right at fox and I
hit backspace. Then I would need to update my fold display to reflect the new reality
which is that it's in a different place. It's now a child of quick, not a child of brown.”

Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact finding. In ESEC/
FSE 07, 361-370.

Exploring code involves guesswork

Developers hypothesize facts
 Sometime look for evidence to support or reject hypothesis
 How much is enough?
 Sometimes just make an assumption

If decision might be constrained, developer could
 a) keep investigating potential constraint
 b) assume true, make change
 c) assume false, make change

Developers try to predict success.

19

Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact finding. In ESEC/
FSE 07, 361-370.

“Why wouldn’t they call it? Now, can I test this? So why if you know the
answer to the problem, do you put the code in the wrong place and then
leave a comment? That’s not like these people.”

Developers choose strategies to answer questions

20

Strategy: Implement & test

Work style [Clarke+04]
vs. Strategy: UnderstandInfluencing factor

Opportunistic Systematic
Development process Test-driven development Few unit tests

Cost of bugs

Time to implement Easy to implement Hard to implement

Low High

Difficulty of testing

Test execution time Short-running test suites Long-running test suites

An easily tested property
(e.g., performance)

Non-functional property
(e.g., testing usability)

A strategy is a sequence of actions developers use to accomplish a goal.
Developers answer questions by selecting a strategy, performing its actions,
and asking further questions.

LaToza, T. D., & Myers, B. A. (2010). On the importance of understanding the strategies that developers use. In the Workshop on
Cooperative and Human Aspects of Software Engineering at ICSE '10.

Developers use multiple strategies to answer a single question

21

Strategy 1. Guess the answer.
― This was a quick hack, not a reasoned changed
because otherwise they would have been removed. But
what would break if they were here?

Strategy 2. Check code history.
― I commented these out 2 years ago along with many
other changes. But why?

Strategy 3. Implement & test.
― Removed comments, all tests still pass.
But did I break anything?

Strategy 4. Ask my teammates.
― Sent an email. Teammates replied with a description of
a rare input which causes it to break. Success!

Lacks knowledge to determine
how these lines influence program
behavior

In order to answer a question, we observed a developer switching through four strategies.

Question Why were these four lines commented out? Why can't I add them back?

Tries to recover rationale, but no
explanation in check-in message

Tests might have identified a bug, but
don't prove absence.

Teammates remembered another
scenario.

LaToza, T. D., & Myers, B. A. (2010). On the importance of understanding the strategies that developers use. In the Workshop on
Cooperative and Human Aspects of Software Engineering at ICSE '10.

How effective developers investigate code
1. Unsuccessful participants did not understand where the design
implied changes should go and made changes in one place.

2. Unless they had a relevant question, stumbling into the code
they should be looking at didn’t help.

3. Successful developers created a detailed plan.

4. Successful developers reinvestigated methods less frequently.

5. Successful developers used more keyword & reference
searches rather than browsing or scrolling through lists.

Limitations: based on 5 participants on one lab task. Listed as
hypotheses rather than results.

22

Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. How Effective Developers Investigate Source Code: An Exploratory Study.
IEEE Transactions on Software Engineering, 30(12):889-903, December 2004.

Experienced developers work more effectively

Better predicted which parts of the code might be relevant

Chunked code as “caching”

Explained facts novices could not

Figured out and made the same changes faster

Successfully solved the design problem rather than its symptoms
23

Expert after 1 min: “Well this is just updating a cache. So, what we’re upset about is that you want to
issue an event and you are doing it by forcing an update of the cache for the fold level of a particular line.”

Novice professional after 10: “What it did was ... computes the new line number and fires an event.
But I didn’t see it change any state.

“What’s going on is that when you’re inserting text you could actually be doing something that makes
the folds status wrong. So, if in our example here, in the quick brown fox. If fox is under brown and I’m
right at fox and I hit backspace. Then I would need to update my fold display to reflect the new reality,
which is that it’s in a different place.”

mins to extract getFoldLevel,
sorted by years of experience (in parens)

Developers find focus points and work outwards

24

Jonathan Sillito, Gail C. Murphy and Kris De Volder. Asking and Answering Questions during a Programming Change Task. In IEEE
Transactions on Software Engineering. 2008.

Developers search along control flow

25

What I'd like to do is identify those core...events... .
[But] I'm concerned that I won't get all of the events
that cause this...to get updated. And I'm not sure,
with the existing tools in Eclipse, how to find...the
places that can cause this thing to be called.

A developer asked:

What events trigger this update?Question:

Reachability question:

Search upstream across
paths to update for events method

call
Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1(ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194.

50% of bugs were related to reachability questions

26

Why is calling m necessary?

What situations currently trigger this
computation in m? find ends in traces(jEdit, ?, m, ?)

Method m is fast enough that it does not
matter that it is called more frequently.

From what callers can the guards protecting
statement d in method m be true?

Method m need not invoke method n as
it is only called in a situation in which n
is already called. (2 bugs)

The scroll handler a does not need to
notify b, because b is unrelated to scrolling.

Removing this call in m does not
influence behavior downstream.

find ends in traces(jEdit, mstart, mend , ?)

False assumption Related reachability question

Question answered incorrectly

find callers(m) in traces(jEdit, ?, m, ?)

find callers(m) in traces(jEdit, ?, d , ?)

find grep(“scroll”) in traces(jEdit, astart, aend, ?)

compare(traces(jEditold, mstart , ?, ?),
 traces(jEditnew, mstart , ?, ?)

find ends in traces(jEdit, mstart, mend , ?)

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1(ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194.

27

Primary question

4 out of 5 longest investigation activities
Related

reachability question

How is this data structure being
mutated in this code?

“Where [is] the code assuming that
the tables are already there?”

“How [does] application state change
when m is called denoting startup
completion?”

“Is [there] another reason why status
could be non-zero?”

Time
(mins)

Search downstream for
writes to data structure

Compare behaviors
when tables are or are
not loaded

Find field writes
caused by m

83

53

50

11
Find statements through
which values flow into
status

Thomas D. LaToza and Brad A. Myers. 2010. Developers ask reachability questions. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1(ICSE '10), Vol. 1. ACM, New York, NY, USA, 185-194.

Conclusions: Exploring code is “messy”

Developers constantly change
 tasks as interrupted
 questions to answer evolve over time
 strategy to answer question
 mental model (domain, situation, program) as questions change

Skim through results rather than methodically read results

Deal with uncertain answers to questions

Many factors may influence which strategy developers use

28

Tools for supporting exploring code

Build a graph of nodes (methods, types, ...) connected by various
relationships (calls, data dependence, references,)

Support queries and/or traversing relationships

Tools differ in
 relationships supported
 type of traversals supported

Evaluations in tool papers all case studies
 Do these tools really help?

29

CodeSurfer: Traversing slices

30

Anderson, P.; Reps, T.; Teitelbaum, T.; , "Design and implementation of a fine-grained software inspection tool," Software Engineering,
IEEE Transactions on , vol.29, no.8, pp. 721- 733, Aug. 2003.

Querying multiple information sources

31
B de Alwis, GC Murphy (2008). Answering Conceptual Queries with Ferret. In Proceedings of the International Conference on Software
Engineering (ICSE), Leipzig, Germany.

JQuery: Querying & Traversing Relationships

Hypothesized problems:

1. Exploration path lost as developers perform multiple searches,
use different tools. Leads to disorientation.

2. Query tools support many types of relationships, but leads to
query / analyze / new query cycle that loses exploration path.

32

D. Janzen and K. D. Volder. Navigating and querying code without getting lost. In Proc. Int’l Conf. Aspect-Oriented Softw. Development, pages
178–187. ACM, 2003.

JQuery: Querying & Traversing Relationships

33

D. Janzen and K. D. Volder. Navigating and querying code without getting lost. In Proc. Int’l Conf. Aspect-Oriented Softw. Development, pages
178–187. ACM, 2003.

Evaluation: Series of 3 examples

Natural language querying

Problem: lots of IDE features,
novices may not know which one
to use to answer a question

Solution: natural language query
interface

34

Michael Würsch, Giacomo Ghezzi, Gerald Reif, and Harald C. Gall. 2010. Supporting developers with natural language queries. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, 165-174.

Information in ontology

These code exploration tools may not help

Evaluated JQuery, Ferret, Suade code exploration tools

18 professional developers working in the lab adding features

“No evidence of any practical effect”

 Did not reduce the developer’s perceived mental workload

 Did not make exploration more focused and reduce # of
 program elements viewed

 Did not help developers find more of the salient locations

35

36

